EE 2030 Linear Algebra Spring 2010

Homework Assignment No. 5 Due 10:10am, June 9, 2010 (This homework counts 1.5 times.)

Reading: Strang, Sections 5.3, 6.1, 6.2, 6.4, 6.5, 6.6, 6.7. Problems for Solution:

- 1. Problem 6 in Problem Set 5.3 (p. 279) of Strang.
- 2. Problem 20 in Problem Set 5.3 (p. 280) of Strang.
- 3. Suppose that $\lambda_1, \lambda_2, \ldots, \lambda_n$ are eigenvalues of an $n \times n$ matrix **A**. Show that

$$\lambda_1 + \lambda_2 + \cdots + \lambda_n = \operatorname{trace}(\boldsymbol{A}).$$

4. Suppose that

$$G_{k+2} = \frac{1}{2}G_{k+1} + \frac{1}{2}G_k, \text{ for } k \ge 0$$

with $G_0 = 0$ and $G_1 = 1$.

- (a) Find a general formula for G_k , $k \ge 0$.
- (b) Find $\lim_{k\to\infty} G_k$.
- 5. Problem 18 in Problem Set 6.2 (p. 309) of Strang.
- 6. Find an orthogonal matrix Q that diagonalizes this matrix:

$$\boldsymbol{A} = \begin{bmatrix} 2 & 2 & 2 \\ 2 & 0 & 0 \\ 2 & 0 & 0 \end{bmatrix}.$$

- 7. (a) Show that a real skew-symmetric matrix (i.e., $\mathbf{A}^T = -\mathbf{A}$) has pure imaginary eigenvalues. (Hint: The proof is similar to that for the eigenvalues of a real symmetric matrix.)
 - (b) Show that an orthogonal matrix has all eigenvalues with $|\lambda| = 1$. (Hint: Consider $||\mathbf{A}\mathbf{x}||^2 = (\overline{\mathbf{A}\mathbf{x}})^T (\mathbf{A}\mathbf{x})$.)
 - (c) Use (a) and (b) to find all four eigenvalues of

$$\boldsymbol{A} = \frac{1}{\sqrt{3}} \begin{bmatrix} 0 & 1 & 1 & 1\\ -1 & 0 & -1 & 1\\ -1 & 1 & 0 & -1\\ -1 & -1 & 1 & 0 \end{bmatrix}.$$

(Hint: Consider the trace of A.)

- 8. Problem 10 in Problem Set 6.5 (p. 351) of Strang.
- 9. Problem 24 in Problem Set 6.5 (p. 352) of Strang.
- 10. Problem 5 in Problem Set 6.6 (p. 360) of Strang.
- 11. Problem 1 in Problem Set 6.7 (p. 371) of Strang.
- 12. Problem 17 in Problem Set 6.7 (p. 373) of Strang. Do parts (a), (b), and (c). Then find a 4×4 matrix \boldsymbol{U} , a 4×3 matrix $\boldsymbol{\Sigma}$, and a 3×3 matrix \boldsymbol{V} in the singular value decomposition of \boldsymbol{A} :

$$A = U\Sigma V^T$$
.