Homework Assignment No. 5

Due 10:10am, June 9, 2010
(This homework counts 1.5 times.)
Reading: Strang, Sections 5.3, 6.1, 6.2, 6.4, 6.5, 6.6, 6.7.
Problems for Solution:

1. Problem 6 in Problem Set 5.3 (p. 279) of Strang.
2. Problem 20 in Problem Set 5.3 (p. 280) of Strang.
3. Suppose that $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are eigenvalues of an $n \times n$ matrix \boldsymbol{A}. Show that

$$
\lambda_{1}+\lambda_{2}+\cdots+\lambda_{n}=\operatorname{trace}(\boldsymbol{A})
$$

4. Suppose that

$$
G_{k+2}=\frac{1}{2} G_{k+1}+\frac{1}{2} G_{k}, \quad \text { for } k \geq 0
$$

with $G_{0}=0$ and $G_{1}=1$.
(a) Find a general formula for $G_{k}, k \geq 0$.
(b) Find $\lim _{k \rightarrow \infty} G_{k}$.
5. Problem 18 in Problem Set 6.2 (p. 309) of Strang.
6. Find an orthogonal matrix \boldsymbol{Q} that diagonalizes this matrix:

$$
\boldsymbol{A}=\left[\begin{array}{lll}
2 & 2 & 2 \\
2 & 0 & 0 \\
2 & 0 & 0
\end{array}\right]
$$

7. (a) Show that a real skew-symmetric matrix (i.e., $\boldsymbol{A}^{T}=-\boldsymbol{A}$) has pure imaginary eigenvalues. (Hint: The proof is similar to that for the eigenvalues of a real symmetric matrix.)
(b) Show that an orthogonal matrix has all eigenvalues with $|\lambda|=1$. (Hint: Consider $\left.\|\boldsymbol{A} \boldsymbol{x}\|^{2}=(\overline{\boldsymbol{A} \boldsymbol{x}})^{T}(\boldsymbol{A} \boldsymbol{x}).\right)$
(c) Use (a) and (b) to find all four eigenvalues of

$$
\boldsymbol{A}=\frac{1}{\sqrt{3}}\left[\begin{array}{cccc}
0 & 1 & 1 & 1 \\
-1 & 0 & -1 & 1 \\
-1 & 1 & 0 & -1 \\
-1 & -1 & 1 & 0
\end{array}\right]
$$

(Hint: Consider the trace of \boldsymbol{A}.)
8. Problem 10 in Problem Set 6.5 (p. 351) of Strang.
9. Problem 24 in Problem Set 6.5 (p. 352) of Strang.
10. Problem 5 in Problem Set 6.6 (p. 360) of Strang.
11. Problem 1 in Problem Set 6.7 (p. 371) of Strang.
12. Problem 17 in Problem Set 6.7 (p. 373) of Strang. Do parts (a), (b), and (c). Then find a 4×4 matrix \boldsymbol{U}, a 4×3 matrix $\boldsymbol{\Sigma}$, and a 3×3 matrix \boldsymbol{V} in the singular value decomposition of \boldsymbol{A} :

$$
\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T}
$$

